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ABSTRACT

Finite mixture distributions arise in many statistical applications.

After the basic definition of mixture distributions, 'many of these

agpplications are listed, sampling models are proposed and the basic

statiatival problems are described. More detailed study is thtn made of the

use of the fagiliar statistical methodologies in mixture decomposition, of the

incorporation of mixture data into discrimination procedures and of the

probleas that arise in hypothesis testing.
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SIGNIFICANCE AND EXPLANATION

Finite mixture distributions are usually characterized by a probability
density function of the form

k
p(x) W f irfj(x)

where w ,***.Wk are probabilities and f 1(.),...,f (.) are themselves
probability density functions. It is often helpful to interpret the {w!} as
prevalence rates of observations from k sources and the {f (e)) as tie
density functions for the observed random quantity, conditional on the
source. In a typical application, in sedimentology, a sand sample if analyzed
for grain-size (giving a frequency distribution of values of x). The k
sources correspond to the constituent minerals of the sand. Mixtures find
application in a very wide number of applied fields, such as geology,
fisheries research, medicine, electrophoresis, economics, botany and
communications. They are also useful as tools in some branches of statistical
analysis.

.The paper surveys the methods of solution of statistical problems whicharise with data from a mixture, possibly supplemented by further data whose
source identities are known.

The most detailed comments are related to mixture decomposition: given
*- I data, to estimate any unknown features of the model underlying the formula

for p(x). All the standard statistical estimation procedures are discussed
and particular emphasis is placed on the points where difficulties arise that
are peculiar to this problem.

The statistical discrimination problem usually involves the use of a
utraining set" of data, whose sources are unknown, to develop a procedure to
aid the identification of the source of a future observation. The present

- I •paper investigates the extent to which mixture data can contribute to such a
discriminant rule.

4 Finally the problem of testing for the number, k, of components is
discussed. The interesting feature again is that, although a very familiar
general technique may be considered, particular difficulties arise in ti
presenlt context.

The responsibility for the wording and views expressed 1.nths de•scrptive
aummary lies with KRC, and not with the author of this report.



SOME PROBLEMS WITH DATA FROM FINITE MIXTURE DISTRIBUTIONS

D. M. Titterington

1. DEFINITION OF FINITE MIXTURE DISTRIBUTIOL4S

Suppose that a random variable, X, takes values in a sample space, S, and that its

distribution is represented by a probability density function (p.d.f.) of the form

k
p(x) - i tjfjCx) , (x e s) (I)

where {(v} are a set of probabilities and (f (-) are themselves p.d.f.'s on S.

Then X is said to have a finite mixture distribution. The parameters (uN) are the

mixing weights and the (f (i) are the component densities. it is easy to check that

p(,), as defined above. is indeed a p.d.f. on 8.

Although equation (1) appears to be written as if X is meant to be a univariate

continuous random variable, we shall subsume, under the "sa notation, the cases of randoa

vectors and discrete data, interpreting p(,) and (f C)) as probability masa functiors

" Jin the latter case.

If the densities (f (')) are of specified parametric for", we shall write

k

in which 0 denotes the parameters relev*at to f(),0 denotes the aggregate of all

distinct parameters in 01i .... k and I denotes the set of all parameters in the modal.

Althouqh Uvere are a few exceptions (see Davis, 1952. tor instance) oest applicattone

of finite aiturets of parwetric dsnsities involve otpo"snt den)itie• of the same

parametric type. In this case, 01..., 0k all belong to the same paranmter space, 0,

say. we osy tien regard _, " definiog a probability diet-ributio over 0, and write

'Oep*arta of Statistics, University of Glasgow, Glasgow 012 QV, Scotland

Sponsored by the United Uftatas Army u~dor Contract No. DAAU29-80-C-0041.



p(xi) - •.I If(xle)
j-1

. / xO)~ (0) (2)
0

where G I() denotes the probability measure on e defined by v.

Finite mixtures correspond to finite discrete measures G (o) and we shall be

concentrating on these. The more general notation of (2) clearly suggests the generation

of p.d.f.'s using more general probability measures on 0. These may be called Vneral

Six~uren. The formlation in (2) also clarifies the origin of the term compod

distribution, which ise sometimes used instead of aixture distribution. The distributioa

on 8 represented by t(O 10) is coMpu;%dad with that an e given by *) I~f, forIIt4cQ NO1) saPoisamfndenit)y. we obtain so-valled comnound Poisson o rpi

distributione.

Aothar revealing feature of the basic p.d.f.. an gi•an in (1), is that mixture data

canber*W " g y~___ st________ toacr at".suppose w v aro ado

variables (Z1,) , where X has s•apl e at end V is discrete*. wih *ample space

(I....,k). Suppose also that the joint p.4.t. at I x and V - I i* feotootimd as

- t 3)(4 (a • , * - ... ,k)

ft"a the mixture density (1) to the marifliaal pA.d.. foc X. Mn observation from the

mixture can therefore be regarded as a realittiou of (,?V). but vith the "a1u ot V

missing. A* we shall See, not only d3eo this Iatinrotative have l.3.i1ats meaning In may

practical proble4m (in which we may have observatios, each of vhich is kaopn to oma from

on* or other of a eat of k source pop(aitlios. but it is wmt know e tetly wbich) but It

also motivates so of the aumerical methods required foe pxt amstt estimati.n,

particularly with mwisAm likelihood (Section 4.4).

• -2-



2. APPLICATIONS OF FINITE MIXTURE DISTRIBUTIONS

In this section we motivate the study of statistical methodology for dealing with data

from mixture distributions by giving soae indication of the number and variety of

applications. These applications we shall divide into two categories to be called,

somewhat arbitrarily, direct and indirect.

In direct applications there will be a belief in the existence, or possible existence,

of k underlying sources from which the experimental unit generating X comes. The

mixture model then appears directly, as built up in the final paragraph of Section 1. The

following list of direct applications is therefore a list of applied fields. In each case

there is a *physical meaning for the nourcee or mixture components.

By an indirect application we mean a circumstance in which the mixture density is

being used s a mathematical device, to facilitata the analysis in some way.

The following catalogue is intended to give a mere toate of the galaxy of applications

that may be umearthed.

M (i) disentoloS. SGasple of sand are often analysed by measuring the frequency

distribution of grain sist* The sand say be snown to be e (literal) mixture of several

iaJerale. It to of interest to estimate the proportions of the different minerals In the

sand. it may also be desired to estimate the grain edie distributions for the difterent

minerals. although these may already be "keov"n from extensive previous survey Wo1k.

(11ý notany. in (1) above, it tot elhorsl types wo wtrite *plant typeO and for *"ad

grain sit** we write 69oLle.A grain sit**# 'plant height* ot *petal dimensions*. then we

account for a wealth of botanical applications.

(lit) Kishoriee end marine bioogical research. Some characteritics of a fish are

easy to meaure once it has been landed, These inelud. length but often do not include sex

(toly another fish can do this easily in some spcie8s) or age. Oata on, gay, fish lengtho

are oftto used for the estioatiol of stex enortions among a population of fish of the ame

age or of the age distribution of a lxt%.- el 4- ral y••rs' |pawn.v,-s. ELit* t, taIken

from eas•r (1973), shows a histogram of leqgth data from a imt of sale aM female

.[-3-
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halibut. The separate male and female data are shown in Fique 1(a) and the mixture data

in FiMure 1(b).

(iv) Medicine. Sometimes data may be available from clinical tests on a group of

patients, each of whom is known to be suffering from one of two diseases. It is

not,however, known exactly which disease is affecting each patient. A mixture model is

sometimes used, with the particular aim of aiding diagnosis or prognosis, see Section 5.

(v) Slectrophoreais and !as chromatography. Electrophoresis is used to estimate the

ii relative concentrations of proteins in experimental samples and sometimes also to establish

which proteins are actually present. Figure 2, adapted from Tiselius and Kabat (1939),

shows a typical electrophoresis curve of concentration against the *migration positiono

achieved relative to a common initial position by the end of the experiment. Different

proteins migrate at different rat"s. so the constituent proteins (in the example of figure

2 they are albumin and a-, 0- and Y-gl,9ba.in) may be identified. This differ* from the

other applications In that the Odata" are themselves in the fore of a smooth curve.

(vi) Rcono•incs. In on model for wage bargaining it iS proposed (Quandt and RMasey.

1978) that there are tuo poesibli phasas, distinguished by some critical value of the *ost

of living index, chacterised by two different regoesaion models. KI practiu- it say 4ot

be known# at aty time at Which data ate gathered, which phaee is in operation and this

leads to a statistical moidel which is a *mixture* of the too regressions (oyitchinog

IvIA) CulaknA sequence of mesagesv is received. Qafch one of which is

"either a signal or just noise. The proportion of sigsals and the sign"i and hoise

dietributioos may be of interest.

(viii) Otherg. t•tchology. paleantology, geology, agL -Itur* and zoolo"y are a few

of the many oth#er fields of application.

2.2. X14DIRCVA(T WW

(I) Outli•r m4els. A mixture of k - 2 etsitites With one mixing Weight Close to

oa and the other close to auto Is *omat ess Used to model outliers. The so-called

ota~m~inted ,otrll distibutlGOs form One suuch class. Their donsitsee are of the fore

:';::I- 5-
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1 -0 )/OI) + (I - #)'1((x - U2 )/02) , (3)

where 01.0 > 0, (u) ( and - * say, is close to one. For

symmetric modela UP - U i imposedi see Barnett and Levis (1978), Abraham and Box

(1978).

(Wi) Heavy-tailed and multimodal densities. The tw-coaponent Normal mixture (3),

with vi U2, is one way of representing a symmatrio heavy-tailed distribution. When the

means are sufficiently well separated, relative to the variances, (3) represents a bimodal

densityi see Section 6.

(iII) Cluster analysis and latent structure models.

jultivarite mixture densities (Normal-based in particular) say be used a* a basis for

clustering techniques (Symana, 1981) and, in spacial cases. torn latent structure models

'r*eiding, 1977). In the latter application the problem becooes that of findlng a mixture

sodal to fit the data. It is not essential that the coomnnt. ut the mixture that is

choeen have ae,.Ina g as physical sources, althotýgr" s,..* Irterpretation ' be made. in the

"be spirit in which 9actoro are interpreted in IACMor analysis.

(Iv) "Gonparajaet•i. 4*nstyU atn• tioan. In the kernel method, a ,-nparsatric

GOULSete of a p.&.C. I(t) L obtained in the fore

i(x) " (nh)" M K(x - N )/h)

Ier* h is a so-called smoothing paraaatoer. i..s.,n Laa randoa sasple from a

population vith the distribution wvhic gives rise to f*() and K(*), the kernel

function. Is itself a P.d.t. see., Coc instance, V,69n (072). The estleate (.) can

obviously be described a* an qua lly-weightad mixture of n Of.mtewnt deufities.

Iv) 1494eling_ of PrIor denoities. )Axtuvres can pGrovIde rich families of cwjugate

prior de•ities in Bayesian analysim. It. for instance. each observation Is distributed as

(O.1) and S is given a Norual prior, then the •oxterior tot 0 is also Normal. The

sawm Co4=uq&cy holds It the prior for 0 is taken to be a k-componet sit•ud of

-7-



Normals. If a *general* mixture is used we are led to hierarchical priors as in Lindley

and Smith (1972).

(vi) Others. These include random number generation (Marsaglia, 1961), modelling of

error distributions (Sorenson and Alspach, 1971), manifestation in empirical Bayes methods

(Deely and Lindley, 1981), and as approximations to other distributions. Sometimes this

last application is reversed. For instance, a lognormal density may be used to approximate

to a skew mixture of two Normales see also Smith and Naylor (1981).

<-I



3, SAMPLING STRUCTURES AND BASIC STATISTICAL PROBLEMS

Roomer (1973) distinguishes, in a helpful way, among three sampling models. In the

first one (MO) the data are realizations of n independent random variables distributed

according to (I). The likelihood is, therefore,

LO9 Yi I f ut(x 1 )d (4)
i-I i-I

a more complicated likelihoed, vhich results if the underlying sources for the

observations follow Karkov chain behaviour, haa also been studiedl use Baum et Al. (1971)

and Lindgren (1978).

Often *upplftentary data are avealab*e whose soutCes hev4 been identifLed. It we

denote these date by *Xt i ..... k. t ,.., then the new likelihood ts

!0
k n

1. 0 * ,.'nj (X:11))

ThsI wdl04.I candom. ptow. o t entr dat~e *bouti the b( f1rther it the642li

Tr e asailo blth ty aof soe at irtlor t* Iolt~e)l thaa alm lly qu . thae the .at o ti€1i

power oi n tf ate coustVeMab*y, tse X2ae .(1f73) oinht t ooti

VD Ofal toiset rise twhe a reat atof tdhree ailabet wrl.u pihe siletu.ticsi

Tiven iat.. frov al, bI il" of to e eastiiate the eet, ure ddeta it y ft,.om. Thist icl

i"Volve, *stioation of same or all at the foilowiftqt the numbe of siittuce compo'nents (lor

* MO d0 ata) the GIni~ng weiqhts antd the 00"mpon t dameitiev. bc Paramneter* thereof.



3.2. Discrimination (Pattern Recognition).

Given data from MO, MI or N2, to use them for deriving discrimination procedures and

to assess the worth of mixture data in this context.

3.3. Teoting for the number of components.

Given data from MO, to find the model with the smallest number, k, of components but

which is still compatible with the data. We may, for instance, wish to test whether the

data come from a mixture of two univariate Normals as opposed to a single Normal. A

related, but not equivalent, activity is that of testing for the modality of the p.d.f.

The rest of the paper discusses these objectives. Most of the space is devoted to

mixture decomposition, on which there is the most voluminous literature. In general, the

methodological principles that will be considered are very familiar and we shall be

discussing what are just particular applications of these standard procedures. What makes

the miAture problem special is that with many of the techniques there are snags, both

theoretical and computational. we shall emphasize these particularly and point out that

so= of the complications remain unresolved.

-10-



4. MIXTURE DECOMPOSITION

Before launching into a catalogue of various ectimation methodologies and their

application to mixture data we go through some initial questions that have to be answered

before calculatione can begin.

4.1. Preliminaries

(i) Which sampling structure is in operationt MO, MI, K2? It is particularly

"important to decide correctly whether Me or M2 obtains. With MO data, estimation of the

mixing weights is notoriously imprecise, so if the supplementary categorized data tell us

Amore about w it can be qt:ite a bonus.

(ii) _eWb!L In the model is unknown?

(a) k7 This eats the problem up essentially as one in cluster analysis.

(b) I o__ y? Zn *ome problem, extensive previos experience may provide

detailed knowledge about t'a* component densities so that they may be treated as

known. This occurs in tmAe problems in sedimerntology (Section 2.1) and ita

remole a•nsin4, in which aerial photographs are analyzed to discover the

.ilative concentrationso of several nropa in a geographical area.

onfly? socetiaes the mixingq weights may be# for all practical

"pourpoes, known. A sex-vatio say sometimae be assumed to be unity, for

(d) v and (f ())'? Perhaps the most commn case.

Zn cases (c) and (d) the (f (*))'a are unknovn and we have the following dileas,

(III) Cain the At j (*)'* be assuned to have !Wagifloie- ti.Wamtric forms, or not? if

the answer is yes then we may subsequently aspire that the parametric forms be simple ones,

such as Wormal l

(iv) I* the dalq otIxtu•re*..w have chosen identifLble? This ia the first of the

complications that may arise with mixture data, although it dooe not happen often in

practieal probla1s. For so&e classes of mixtures the mairbe.rs of the cl~as are not uniquely

dsolinad *ad. if this is the case, *etimatioa procedures are likely to run into

+ • -11-



difficulties. The main culprits are some discrete distributions on finite s-.nple spaces

and mixtures of uniform distributions.

(a) Consider mixtures of binomial distributions Bi(N,O), with N known but

13 variable. Then the class of k-component mixtures is identifiable only if

N . 2k - I (Blischke, 1962).

(b) Let U x(a,b), as x varies, denote the p.d.f. for the uniform

distribution on (a,b). Then the following two-component uniform mixture

~ Ii p.d.f.'s are identical

AU (OQa) + (I - Q)Ux(0,1), for all 0 < a <

Theoretical work which reasaures us that most clauses of finite mixture densltiev of

"interest are identifiable is available in various papers, including Teaicher (1963),

Yakowitz and spragins (1968) and Chandra (1977).

(v) Which method of estimation to use? The decision about what technique wu shall

V1

use may uell be based on mr statistical philosophy but practical feasibility may also play:1 , part, as we shall sce. we raw list, by subsectionj me'hoft that have beer, used for the

tixture problem.

'S.2. G-rapghlool methods.

h 4.3. mathod of mamenta.

4.4. Naximu. likelI.hood.

4.5. Minimum distance N!Mt.hos.

4.6. RUG41ian VA01hd..

4.7. 21ential methods.

4.0. CurwV CItting.

Por pUoses of Illutratiog we shall reetrict detailed attention to two simple

exaXpls..

Ixsaple 1. Mixtrure of two known t.nsities.

V(s) , f (S ) 0() W (1 - 41 ))f2 C) (a U Si * 45)

1e f• C."f ) aud f• (*) are knowm and 0 4 v1 1,

-12



Exampile 2. Mixture of two univariate Normal densities.

The p.d.f. is given by (3), which we rewrite here, for convenience

p(X) I a1 - 1 Va I ) + (I I 1)a 2 *((x - P 2 )/02) ,(3)

whore a 1 > 0,a2 >0 and 0(11T(1.

As an indication of the flexibility of this As a model, we illustrate, in Figure 3,

just 6 special examples.

4.2. Graphical zethods

These have been used both in an exploratory way, for obtaining an informal assessment

of the number, k, of components# along with quick, if crude, pavameter estimates for

subsequent numerical i~mprovement, and also as the only nthod of analysis applied to the

1 data. The latter was conmon in early work in applied fields and was stimulated to some

I ~extent by the numerical pr~oblems associated with the other methods.

The graphical method* are based on convenient plots, related to either the cumaulative

dia ~ribtu 'on function or the p.d.f. itself. The most familiar of the former is the use ot

I :lormal probability paper with En!!LIq 2. Figure 4 shove the theoretical plots for a

particular NOMsAJ. mixture and its cimponents. The corresponding plot from a sot of data

can be usedI to assess -hether the uhart~teristic Kaornai mixture shape is apparent and, if

4 so, tc provile estimates of the means and variances (from the asymptotes) and for the

mixing weight (rougui?, toNL the *Aoiet of inflexion)l see Towlkes (1979) for a useful

actvey and eaxtinuion of this techniqui,.

Other plots for _rxtnpL~j 2 havi Ieen based on the p.d.f. and on# of its data-baaad

toti~siors, the histngram. Firat ditterenrts of the logarithms at the histogtas

frequencies give local o'.Mroximati~mv to the derivativeos of the logarithwo of th.. Wormal

coepnuat that is doain-..t at the ;iLvefl pwint. rurthermore, this derivative wil,- be linear

with negative slope whI~ch is Invercoly pro~portional to the varianca of the 4ockinant

I ~cQmpuent- These facts fora tne Iacis of a graphical uaethod of Dhatt~acharya (19,67). The

quadratic ns..urv of the logarithm of a Normal p.d.f. else stimulated a eiq'hca

.13-



Piguw. 3. A selectmio of density funtion*toi for
&Lxtu~r* of two unvoriate Nowu1 densities.
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method of Buchanan-Wollaston and Hodgson (192S). In general, success of t!- nethods relies

heavily on the mixture components being fairly well separated.

4.3. Method of moments

Suppose ± contains a distinct parameters and that m 1(X),...,m (X) are s real-

valued functions on the sample space such that their expected values exist as independent

functions of *. Write

sm ( X) j ,.s.

Then, given X - (X1 ,...#Xn, a random sample of size n, a set of moment estimators

for j can be obtained by solving

where (!]• - n [ sxi). J -(x

If the clas. of distributions under investigation is identifiable, consistent

estimators of f are usually obtained, than" to the laws of large numbers. Asymptotic

Normality and the asysptotic oovariance structure can usually be deduced from a first order

Taylor Expansion of (6) into, approximately,

where DO') denotes the matrix of first dorivative# of k(j). Approximately, therefore,

" oV il) * O (,) X1 oV(; )(D C ±-)7 1 ' (7)

Although this is to far quite satiasying, problem, do smetiame arise when attempts

aVe sade to solve the Appropriate realisetioa of (6). i1ratly# explicit solution may not

be possible &ad, secondly, there say be no solution in the parameter space, or mare than

005.

K~rapl.I. ixtuare 91 two known densities.

With only one unknown parameter, v,, only one moment equation io required.

IurtherfOre, the equation will be linear In y, giving

1 I 12)/(U 11" - It) 1 19)

where Ii . C xlj) x)dx, j * 1,2. It is easy to check that is untbiased for v

"I -jG

-16
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and

var(1 1) - var (m0/0U11 - U1 2
2 • (9)

Unfortunate!.y there is no guarantee, except asymptotically, that 0 ft < 1,

althougn in this simple example this may not have groat practical import. In principle,
study of the right hand side of (9) may suggest a function a7C) for which var(t1) is

small, or even minimal and which would therefore give an 0optimalM moment estimator.

Although achievement of this requires knowledge of I itself, me practical guideline

may well be pomaible in many examples.

The usual power mmant# are commonly used in (8), ot in (6) for that matter. Another

Ipossibility in this example is to use on indicator function for a 0.That is, take

()1 = itf X 4 c

- 0 otherwise

T•hen S is the proportion of observations iu the temple 4 cm see Johnoon (1973)

ard James (1970).

3ve*ei 2.- tqi3~ut of two univariLate RooEWla.

Poseibly the earliest systematic look at mixturves as the application of the method of

moments to this example by Pearsoo (1094) in a etu4y of forehead measurements of a set of

*&leend Isamle crabs. we now have five parameters and Peargon used moment equations for

the first fiVe central 0entS. After a oertain Amount of elimin•tioa of variables the

* ,*computation problem reduces |I?) to that of finding a negative root of a ninth degree

polynomial, solution of vhich w•us no mean feat in the 1g901'u SAU4-substitutlon then

provides the paramter eStisates. SMotimLs. hoeever, the nonic has no negative toot and

soetimes more than o4e. This is awkward, althoogh in the former caet a single Normal is

orten an adequate modal and In the latter, either solution is usually eatiseactory. Just

how often these and other complicatione arise has be"n inveatigated by Bowman and Shentoa

(19?•).

The number of papers that are directly derivativ, of that of Pearson (1094) run*e IntoJdens, With many Applications and modifications of the method of solution. PCor the

-1?-



special caoe of - 021 the "nonic* is replaced by a cubic (Cohen, 1967) and a neat

graphical aid for this case is given by Preston (1953). The bivariate case is mentioned by

Charlier and Wiokeell (1924) and the sultivariate by Day (1969) and John (1970).

Histures of the other sime parametric distributions have also been given the ethod-

of-ý ta treatnt. several of then, in which the component densities are one-parameter

p.d.f.' s lead to a general pattern in which there is a sat. of mment euation of the form

k 0-1
I I a1 aW , a 1.**.*2k ( (10)

where, 6 is the (scalar) parameter associated with the jth c •om ent 4enity. co a I

and the other {ca are data-based.

They include aixtures of exponential& (based n ordinary poer moenta), binomials and

negative binomials (both based on weighted factorial mnts, with 0 as the* euccea

pr~obability), Poissons (factorial momants), one-paraimeter Weibulls and ono-parameter

gamma (both btsed on weighted per moments) * end • gweraliaed method of ments duo to

Wabir (19). for an illustration of the standard method of solution of equationa lIke

(1) am lichke (1944).

Aa in tM *jj (7) may, in principle, be used to select *Optimal" MOM for use in

me*e geeral PCOUSSOn. Ta~lLe *an Light 41904) dliscusa the Choice of fractional power

taso a0 A to Wfin -se dot cav(j)* as given by (7), for a mixtue of two e" atiale.

4.4. paiimiklh~

rat a given pr"aotrLc mixture model, the method of mezias likelihood La available.

That tbere are difficultjea to immadiately apparent If ue look at the WO likelihood give&

by OWAation (4). Almost certainly the ord•r statistic (in the CASe of uni•raate

coatinuous data) will be milimal sufficiset and eplicit L'e will not be available.

Ksrical iptimtiatioa will be necessary although, in many *as", maximum likelihood

analysie of the "complete* sateorited version of the data may be very easy, as would be

the case for both our special examplee.

I f LO (t
1

)u I (slt -1 1 ) L2

I ii" i-



where f f (x i), - 1,...,n, p - 1,2. Thus

3loq L/3, 1 . C f -12 f1
i-I (1

and

log - - lCfi 1 - f ) 2 /plx) 2 • (12)

Although we asee, from (11), that the likelihood equat ion isa a polynomial equation of

degree up to (n - 1) in 11, equation (12) shows that log % is strictly concave in

ni, eo that there is at most one real root, W1, of (11) and it gives a global maxiaua

of Lo). It is easy to check whether 0 1 C 1 and thus deteruint the maximum

likelihood, t1, say. Peters and Coberly (1976) generalize this to a version of this

eIaps with more th4a two components.

iven with thi esimple problem, however, there is a complication, which arises in the

asymptotic theory of maxiaum likelihood. It ii fairly easy to discover that, if the true

value of I is I then, asymptoti4ally, t1 - I with probability 1/2. Thus f IsI I

not Asymptotically Normal, although it to consistent. The standard t1eory tails because

the true C 1 it on the boundary of the parameter space.

L o L - u)/r) * (( -II)o;.((Kj - y2))

The to-cowonent univariste Normal mixture is by far the kmost oomonly reemrohed or

applied ease and yet its likelihood surface it a pot~etital diameter ara. It is riddled

with singularitteo. It we tat. may. U, * Xt* then it is eay to ae that, as 0o * 0,

LO * P. urtheroroe, there are "any reported cames of weird teastures on the likelihood

surfaces, quite apart from the proble of uingularitleaet se for instance the related

fiwre I of vartlt•sn (1977). They include multiple maxisa, unusual troughs and urusual

behaviour at the boundary of the parameter space. In spite of this, the method of maximum

likelihood Is used in practice for this problem an Ulefer (1971) has even established the

existence of a local asimum of LO for which the Usual Asymptotic theory holds. To s

ii -19-



extent the difficulties are lessened if there are supplementary categorized ,idta of if the

parameter space is restricted, by demanding that 01 . a2* for instance. As far as the

computation of maximum likelihood estimates is concerned, we may employ traditional

numerical methods, of which the most familiar to statisticians are the method of Newton

Raphson and its derivative, the method of scoring, both of which calculate, automatically,

via a Hessian matrix, an estimate of the asymptotic covariance matrix. Boeo (1967)

discusses a one-stage method of scoring for Uxlmple I If the initial estimator is

consistent, then the first iterate is Best Asymptotically Normal.

It is also possible to exploit our interpretation of mixture data as beingI "incomplete" and use a version of the SK (Expectation-Maxifisation) algorithm of Dempater

et &1. (1977). The algorithm generates a sequence of estimates {(, } of I for which

the corresponding sequence of likelihoods is aonotonic increasing. Although it can be slow

"to converge, the algorithm is usually very easy to program. Maty of its oanifestations,

including those related to mixture problems, appeared in nuoh earlier papers as appealingi" euccessiv--aepproxiusations procedures, without the general structure or simple proof of

monoton•Luity being spotted. In Settion I we interpreted the oberved mixture data x (MO

data) am origiaating from a complete date-set

but with the *ource Identifiers yl,...,yn missing. The two-step Lterative stage of the

ZN algorithm is as otllows, in which g dnaotes the pd.t. for the Complete 4'ata. We

suppose that parameter estimates are currently avalLable, to be improved upon to

give Rbopefully, 4 r* (r)

-f I V-auStS 9009 g t jY)I•,jjt) , say.

b9-steop Find -to maxiale, Q1.

Details of the general 04 algoritta tor finite aixtureA are given Settion 4.3 of

Dempster et al. (1977), where it is found more oonvenient to express the source identifiers

in terms Ot indicator Vectors. mere we #how the appealing tot" for our two examples.

•ii --



Example 1.
t (r) (r)). (i r1,...,n) 1,2, where

R-stop: Given le I T fi /P (jfjl xi) -

Ir) - - Ux r ) W- *Crlf (x) + -( )f Wx).
2 1 1 2

j )-step, T(r+1) = --1r

Note how*, in the 3-step, the n observations are "allocated" to the two components by

fractions which are current estimates of predictive probabilities. That is

(Ur) - Cr)

In the K-step. I is obtained asa *relative fv'quency" based on aggregating

these fractions. The categorized-data version would have all v to as , ro or ujiity.

~, I ~gaaX~ e 2,

ie ,r) C (r) (r) Wr) Cr) r)
I-StI. 1 Given r) I( *U1 1 M2  ,2 ),lt

(r) (r)Cr)/W () 1V1 f" /5P ixi) I-t ... o

where (a) . ,r).) -I, ...,n, and

•i*O '(1) (r) W ) Cr)S ( I CI )/a" for each I,)

Again the (() are our•at predictive probabilitie• .

'• .• to:)..,). • ( 1 Cr.))! * ,

i. , V1

nd ot th siilarityO -) o to t he cr)•C•atios for) fu2 y-catrgo)rizd &t.

similar ostlo)I rocuroloas &&* avaLlable for mixtures of other paranotr~c distribution*

such expo~nnt~l•e, Poissons and their generalization. the *xponont.L41 teasly. wole o17)



and Day (1969) give the YX algoritha for multivariate Normal mixtures, Skene (1978) that

for latent class analysis, Hartley (1978) that for the switching-regressions model and Baua

et al. (1971) that for the Markov chain case referred to in Section 3.

Many other families of mixtures have had their maximum likelihood methodolog' dealt

with by this or other algorithms. They include binomials and others (Hasselblad, 1969),

tr~uncated exponentials (Mendenhall and Hadar# 1958)o uniforml (Gupta and Miyawaki, 1978),

von Mimes (Mardie and Sutton, 1975), logistics (Anderson, 1979) and even the coupo4

Poisson distribution (Sivar, 1976).

A related approach is the so-called *cluster analysis* method. For Example 2 this

amounts to the folloing. Consider all 2 partitions of the data into two clusters. For

ri, each partition, maxiamie the likelihood and choose that partition and correeponding

areameter eatiwat.. which give a global maximum. Symons (1901) eapmaizes that the major

usefulness of this mat)hod and its mjltivariate version is in cluster construction as

opposed to parameter estimation in which obvious bias" occr. in the univariate Nor*Als

case, 9*evl. 2, the optimal partition corresponds to *eo' cut-off value c, eay, much

that all xt 4 c go into one omponent and the rest into the other. That the resulting

vearinc estima"te, may, are biased to quite clear.

4.5 10nimpa dkstance e*ts!aw~tiq

A wide variety of estiation proceduream ay be envisaged which can be Interpreted

inforally as the Ainimizati•o of

Idata, theoretical distribution)

over the second targont, where 6 is gomi*as oavs of diffetto ce or distance. Kaoe

formally, we may choose . to miniakse

where It is the theoretical cmuwlative distribution function and F so scm datt-based

version, the •st natural being the epmirical distribution funftion. Xll marts at 6 %&y

be chosen, sc of them aetrics. so&* not, and indeed the previously metioned methods of

moments and maximum llkmlih•od can be described in these tetas. The latter corre*tpan to

the WtUIb -Leibler directed dIvergance

16-22-



6 (F,G) -f log((d(x)/•(X))dF(x)

where dP(x)/dG(x) in a ratio of *densities*. Given data of type KO, the part of

~KL "j '±i

n
f log(p(xI±t))df(x) - - log p( - log L.V I-I

Other special versions are

6 (7,G) -f {f(x) - 2(X)) 2 -(x)IX
C

and

DiOcrete varstono of these give the methods ot sinlaum chi-sq~ured and minisau

modified chi-squared, the former of which ,as used by Fryer and ARberts (1•71) for Normal

Uixtures using grouped data.

The quadratic distance function

f (F(o) a x))

to useful, particularly for our OI!W10 T.

where r 00 &s. tho kmu~ml~tive &Astributimt function from I') us have to aimiale,

therfore.o a quaftatic tunction of W, 1 1,11 #ubject to v v~ W . 0. T 1 0. it

the inonnegativity conetraints are ignored. expiLcit solution is pmoibla for ft ae

macdonald And ptcheNr (1979), tOt knstmncm.

when expl•c•t solution la not potsibl. nusmrlcol solution s reaquiro. A first order

Taylor 8"nsIon of the stationarlty equatims can be uade tho hbals for ac*w4totic

rsoults, as in the imthod of Nounts ot maxisa" liklihood. to particular. asyeptotic

COVICLACee Satril* May be ob~nV.

EA E E :iticti of te bsic tecLqus to to Ii:ia.sl a distaas.' Omumurt between, hot

F adr bt ad0(2.sy hr1t$m rnf~ tr wt
u u



on u, clearly. Oon approc~ch is to impose a weighting measure, W(u) on tne range of

u and to minimiza

w ~ 6(u,*(±fldw(u)

Quandt and Ramsey (197C' vise this method with

(i) 6 quadrdatiC,

(ii) W(l) a measure with finite supporti'

(iii) *(1j) the moment generating function.

T'ney apply the technique to Normal mixtures and switching regressions. Xumar at al.

(1979) use the characteristic funciton with a continuous measure for W(*). So far, little

has been said about the obvious problem of choosing an "optimal" measure W( *), as far as

the asynmptctic covariance matrix, cov(j)# say, in cnrncerned. It corresponds to the

choice of optimal women, equationis in Section 4.3.

A slightly different use of distance functions is that of Hall (1981), for estimating

mixing weights when there are date available from the mixture, providing empirical c.1.f.

F, and from the kc component distributione, giving tempirical e.d.t.'s i ... or k. The

tt ....t are chosen to minimize

AS In the treatment of Hxample I above, the use of a quadratic 6 gives explicit

mini.mization, if the nonaegativity constraints are ignored. For this essentially

nonparametrIc technique, Hall (1981) deri'Yes asymptotic theory. Tittoeington (1903) looks

at versions for discrete and smoothed continuous data.

4.. ayealan method

There is usually a strong simil~arity betwestt the relative ease that is poasibke with

likelihood inference and Bayesi~an methods. In principle the Bayesian approach promisess to

* b* the tuore amenable with mixture data. In practice we ran into difficulty again, as

illustrated below with MO data.

kAMMpLe -1

Lo 1 1 f + (1- ) (13)
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where the summation is over all possible y. L0 , therefore, is the sum of 2n

likelihoods each of which corresponds to categcrized data. If categorized data are easy to

deal with in Bayesian Analysis (In other words, if there is a convenient, conjugate family

of priors) then the same will be true for mixture data. In this example, if a Beta prior

-" is available for T• ' tez. the posterior density for I will be that of a calculable

mixture of Betas. Unfostunately, the number of mixture components is 2n1, which quickly

becomes large with n. If the numb.or of mixture components were k, we would end up with

a kn-component mixture for the posterior for wI.

Exaiple 2

Here the natural prior structure is to have T (11 ,' ) end (pa2 mutually

independent. Then "as usual' choose a Beta prior for I and a Normal/inverse Gamma prior

fir each of Wifa,2 ) and (W2, 2 ). Again exact results may be written down in terms of

2n-component mixtures for joint and marginal posterior p.d.f.8s.

Various ways of coping with this computational and storage problem have been

considered.

*I CIM if only posterior expected values are of interest, use numerical into;ration

based on (13). This may nlot, however, be viry helpful in some airoumatances. It, for

instance, a posterior dennity is mult.Lmodal, then the posterior mean may be an unhelpful

indx• of location. Nuaewriol integration may however be the way to calculate predictive

depsities* as given by

• ," ~q(1) - 3 plzlj) - I plzlI*lt(±w~xd±

where t(*IE) denotes the posterior p.d.t. for j.

* c(i10 Neglect terms in the posterior which are known t-u be "mal. Uhen a

contasination model is used for outliers, IisL considered to be close to 1. Only thoes

terms in LU with small power* of (I - U ) are retained and the postertior p.d.f. is

renormall-od appropriately (Box and Tilo, 1968, Abraham and Box, 1978).

(iii) Select a (co"ratively) small number of t.e 2" term2 at random, evaluate them

ancd renormalire (Leonard, 1982).1 -25-



(iv) If only the predictive density, say, is of interest and not the parameters, J,

themselves, replace the mixture density by another with cimilar characteristics but which

is more amenable to practical Bayesian analysis (Smith and Naylor, 1981).

(v) Use an approximate method based on sequential incorporation of the data

(Section 4.7).

A Bayesian version of the *cluster analysis* approach (see end of Section 4.4) is

discussed by Binder (1978).

4.7. Sequential methods

There is an important class of methods in which the data, X1 a...,X, are treated

sequentially and which lead to ways of decomposing the mixture approximately. Many of the

procedures, particularly related to Example I (known component densities), were developed

in the electrical engineering literature and, consequently, introduce a new jargon, The

decomposition problem itself is called that of unsupervised learning, in that we have to

process MO data without being told the whole story, namely, the identities of the

sources. In the engineering context, the sequential natura of the analysis serves the need

to process, on-line, data which become available sequentially. When such methods have been

developed in the statistical literature there has also been the principle of trying to

obviate the computational difficulties implicit in maximum likelihood and Bayesian

"a"alysia, as vs shall see. We shall use Axarple I to Illustrate four procedures.

(I) Decision directed (Do).

(it) Learning with a probabilistic teacher (PT).

(ii) Qua•i -axiAmu likelihood (QML).

(iv) QuasL Baye* (Q1).

Xxasple I

Suppose, after r observatious save beon dealt with, the 'current' esetimata of

_is ,(r) -* 4C a 4xt observatLon, xr+, we evaluate (Oa. Section 4.4) weights

(r+1i = {) " . i ) .
w f1 I1N r+1)/ptsr(* | 1

and
(r+1) W (re1)w2  I"v
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These weights have possible application (see Section 5) in the classification of

Xr+I into one or other of the two component populations. The procedures de"elop quite

naturally from this interpretation, particularly the first three.

DD: Assign observation r + 1 to component I (reap. 2) if

(r+1) (r+1)
wI > (reap. <) w2

PTs With probability (+ assign observation r + 1 to component J, j 1,2.wj

QL: Assign a *fraction" of observation (r + 1) to component J,

= 1,2.

This leads to the following recursive algorithms, stated here in forms which fit in

with comments later on.

DDt If

w (r+1) >)(r+1) (r+1) (r) (r r (r) (14)

If

r(+1 Cr+1) (r+l) C(r) _(r + 1 1  r) (15)
V1  <w 2  ' I -r)1 1

PTa With probability w (14) holdsi otherwise, (15) holds.

QXLt For - 1,2, w , Cr) - (r + r) - (16)

in the QB approach the rationale is to maintain a Beta density for V at each stage

and a recursion ia set up on the mean, for which we use the notation w. it, at stage

r, w, Bea .'WO so that v(r) .r/(r a r/ + then the distribution of v at

stage r.+ I ought to be a mixture of a Be(Qr + 1, r) and a o(a r,8r + 1). Instead, we

approximate to this mixture by a single Beta, with parameters a w vr+ 1 ) and
r

(C+1) Cr41) (r+1) (r)
8r + W2  w vith (w I)2 defined in terms of I exactly as above. We

obtain

(r1) Cr) - r + 1) r) - j r) .1

obviously the results will depend on the order in which the data are incorporated but

the on-line facility may over-ride this criticism. The important theoretical question is

whether convergence can be guaranteed of ,Cr) to the true w as r ft (n + -). The

recursiona (14) - (17) have been written in forms which suggest that the key will lie in
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the theory of stochastic approximations (Wasan, 1964). For the DO method it is known that,

sometimes, the sequence (Ir)} may *runaway* to a value other than the true T For the

other methods, consistency can be established. Similar sequential procedures may be set up

for more complicated mixtures (Smith and Makov, 1978), Titterington, 1976, Titterington and

Jiang, 1981). A useful survey is provided by Makov (1980).

4.8. Curve fitting.

So far we have given no indication of how to analyze (exactly the right word herel)

the electrophoresis curve of Figure 2. Here the data are theasleves a smooth curve. in

electrophoretic practice informal methods are sometimes used for estimating the relative

concentrations of the proteins. The area under the curve is divided up in as fair a way as

possible and the sub-areas are measured using a gadget called a planimeter.

For a more formal analysis, minimum distance methods may be used (Section 4.5) and a

modified type of Fourier analysis is also available, thanks largely to Medgyessy (1977).

This approach is stimulated by the following obvious statement about curves like the

p. d.f. corresponding to sxample 2. Suppose we let

p(X11A) W 0;,#((x + (I - V 1  Wx - P2/021) (10)

2, 2
wahore ~a aj Xf 1 and 0~ < X <. min~ I 0i).

As A increases from zero, the mixture becomes more and more clearly bimodal and the

parameters become easier and easier to estimate from the curve. By operating

mathematically in a specified way on the datum curve it Is indeed possible to drav data-

based versions of (18) and, thence, to decompose the mixture. Nedgyassy (1977) gives

details for both continu*u and discrete data. Stanat (1968) gives multivariate

versions. Gregor (1969) a*plieo the procedure to histogram data and Tarter and Silveta

(1975) decompose bivariate Normal mixtures in a rather similar manner.
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5. DISCRIMINANT ANALYSIS

In usual discriminant analysis there are training sets of categorized observations

from k sources. From these data a procedure is developed for assessing the possible

source of a further observation, x, say, the source of which is unknown. our questions

here are whether further uncategorized data can be built into the discrimination procedure

and whether the discriminatory performance is improved thereby. In the limiting case only

uncategorized data are available from the start (N0 data). (In practice it may be

expensive or, in some medical contexts, dangerc.-s to obtain enough information to fully

categorize an experimental unit. If therefore unoategorized data are useful as such, this

could be very welcome.)

Whether or not uncategorized data are useful at all depends critically on the model

chosen for the joint probability density

p~x,y)

of x and the source identifier y. we may write either

p(xy) a p(x)p(ylxl (0)
or

p(xoy) a p(xly)p(y) (S)

in which (D) recognizes the 4iagnostic paradig! and (a) the sampling pwadig of David

(1976).

In disoriminant analysis we are interested in using the training data to tell us

about p(ylx). If a parametric version of (M) is set up such that the parameters

associated with the two factors on the right hand side are distinct, then no amount of data

on uncategorized data give any information at all about p(ylx). if (S) is used similarly,

however and we obtain, by Bayes Theorem,

p(ylx) a p(y)p(xly)/p(x)

where p(x) is a mixture density, as in Section 1, then the uncategorited data will affect

the discrimination procedure and its performance. In particular, as the amount of

uncategorized data available increases, p(ylx) should be estimated consiitently.

-29-
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Discriminant rules based on estim•ted likelihood ratios will tend to the optimal rule (in

terms of misclassification rates, that is).

gxeumle 2 (Restriction: 0. - 0-)

In this case the likelihood ratio rule can be written in terms of a discriminant

function that is linear in x and depends on the unknown plameters (Lachenbruch, 1975).

These parameters may be estimated from mixture data, with or without supplementary

categorized data sets, using, for instance, the 34 algorithu of Section 4.4. Per.lormance

may be assessed either empirically or by considering the asymptotic expected rate of

insolaasification. O'Neill (1978) and Ganesalingam and McLachlan (1978), in almost

simultaneous publications, showed that the mixture data can help in this contxt, although

the two Normal components have to be rather well separated for the effect to be

substantial. Let A - I - U 2 I1/ and suppose is - 1/2. Then, relative to the case in

which all data are categorized, the asymptotic efficiencies for NO data and for K2 data

with 50% catogorised data are, respectively, 10% and 50% (for A , 2)s 651 and 83% (for

A-4).

Dipirical evidence of the gains from an approximate Bayesian version of the

inultivariate Normal case is given by Titterington (1976) and Anderson (1979) combines the

"paradigms (D) and (8) by parametrizing according to the factorization (8) and then

analysing the data by logistic methods, which are diagnostic in spirit. Silveruan (1978)

estimates likelihood ratio's nonqarametrically using data sow of which are uncategorised.

It is clearly disturbing that the two parametrization& based on (D) end (8) lead to

qualitatively different results in the present context. It (D) is used wrongly then

potentially useful information is not being useds if (8) is used wrongly then the bonus the

mixture data appear to offer is misleading. It make@ it important to find the right model

in any given application and, needless to say, it has led to considerable controversy about

prinelple.
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6. HYPOTHRSIS TESTING AND MULTIMODALITY

In Section 4 we mentioned cluster analysis as a means of establishing the number of

components present in a mixture when we only have uncategorized data. Alternatively, we

may use likelihood oriteria with added penalties for the number of parameters involved

(Akaike, 1973, Scbwarz, 1978). Another possibility is to seek the mixture with fewest

components which is still compatible with the data. in particular, we Nay want to ask

whether there really is a mixture or whether there is just a single underlying component.

This could be just the sort of question we want to ask in practice. We seen to be on well-

trodden ground, if parametric modela may be assumed, because the problem can be formulated

as one of testing between two nested hypotheses, for which the generailised likelihood ratio

test is available. However, we soon hit snags.

Rxmple 2

HOt Single Normal.

H1i Kixture of two Noreals.

We would hope to evaluate the usual *2 log 0" test statistic and refer its value to

a percentile of a X distribution vith some number, V, of degrees of ftedom. What#

hower, should V be? tn most problems, V is obtained as the number of constraints

required to reduce H1 to NO. We may obtain this redlutlon here, however, by oith.er (I.)

wM a I (I constraint), or (U1) u, A M3 2 a, 00 (2 costraints).,

Should we take Y - 1 or V - 2 or maybe smo intermediate value, cs conjectured by

Hartigasn ( 1971)?

Should we even be tr'ying to use the X3 table at, all?

Hit 0 < V < 1.

U•re asymptotically. under Ui0, th mximum likeliho esetimat~or for v I in the H1 model ie

equal to i with probability 1/2 (Section 4.4). Thus 2 log is zero, with probability

1/2, and therefore certainly not X2
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The problem is that the regularity conditions required for the asymptc - i c theory do

not hold (c.f. Section 4.4). Under HO, the true value of vI lies on the boundary of its

parameter space. In Example 2, HO also corresponds to a region on the boundary of the

parameter space for HI, a region in which identifiability Fails.

So far, the treatment that has been developed for this important difficulty is far

from satisfactory. Until recently, in many applications the X2 approximation has been

used without the awkwardness about degrees of freedom being detected. For Example 2 and

multivariate versions thereof, some simulations have been carried out in attempts to

concoct a number of degrees of freedom to use in the X2 table; see Wolfe (1972), Aitkin

et al. (1981) and Everitt and Hand (1981). Hardly any theoretical work has been

reported, Davies (1977) mentiona, but does not work through in detail, the use of a union-

intersection principle for one special example.

Alternative test procedures are themselves somewhat unsatisfactory. Engelman and

Hartigan (1969) use, as test statistic for Example 2, the estimated Nahalanobis distance

corresponding to the optimal "maximum likelihood* clustering of the data into two

components (end of section 4.4). Also for example 2, omnibus tests of Normality could be

used.

IA final possibility is to look at the degree of multimodality ropreeented by the

data. of course, unimadality of a density it not equivalent to Its corresponding to a

single component density. Indeed, a symmetric mixture of two univariate Normale

(e1- 42 - 0) is only bimodal if t I 1 - i21 ) 20. The study of bimodal and

amltimoaal densities Is, hoever, of sme Interest and the two component Normal mixture is

a convenient model for a bimodal density. (An alternative one with one fewer parameter is

the quartic exponential donaitya see kats, M90.) Many papers, especially in fields of

applicatloa# talk specifically about multimodality. What they are usually interested in,

however, is the possible presence of a mixture (Murphy, 1964). Whet it possible, however,

Is to use a significance test against undnodality as a conservative test against the

hypothesis of a one-component distribution. At least the asymptotic theory will not cause

such problem.

[ •':. -32-
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Silverman (1981) has developed a technique, based on simulation and nonparaetric

density estimation, for assessing the modality of a data-set.

7. CWSING REMARXS

It is hoped that we have done justice to the variety of applications and special

problems that arise with distribution mixtures and that it is clear that the thorniest

problems await satisfactory solution. The field is very such alive and, if anything, the

publication rate on this topic is higher than ever.

V IWe have not been able to give many details of analysis, nor even to provide anything

like a full list of references. Several papers have been written which contain survey or

bibliographic materials see Blischke (1963), Clark (1976), Macdonald and Pitcher (1979),

Odell and Basu (1976) and Murray and Titterington (1978). Further reference may be made to

sporadic sections in the quartet of books by Johnson and Xotz (1969-72), to Chapter 4 of

Ord (1972) and to the recent monograph by Zveritt and Hand (1981). The present

Contribution arose from work towards a forthcoming book by Makov at al. (1982) where, it is

hoped, the missing details and references will be fully documented. In particular, a much

Sfullor accout of th sequential methods of Section 4.7 will be provided.
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